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The Extrasolar Planet Zoo

Hot Jupiter

WASP-18b, solar-type host
M ~10 M, R~ 1.1R,
a~0.02 AU

T~ 2400 - 3100 K

(Hellier et al. 2009)

Super-Earth

GJ 832c, red dwarf host

M sin(i) ~ 5.2 M, R~ 1.5R;
a~0.16 AU

T~ 230-280K

(Wittenmyer et al. 2014)



ATMOSPHERIC ESCAPE, NEAR AND FAR

eEscape alters ~all planetary
atmospheres

*The high-energy stellar emission
dominates atmospheric
photochemistry, ionization, and
heating

eExoplanets are laboratories for
studying extreme mass loss that
no longer operates in the solar
system

Figure courtesy of
Paul Rimmer - Cambridge



HOT JUPITER ATMOSPHERES

eEUV heating driving mass-loss from short-period planets

eMost spectacular example has been on the short-period
Neptune-mass planet GJ 436b




EXOPLANET ATMOSPHERES

eNarrow-band/spectroscopic transit analysis can probe
absorption by specific atmospheric constituents

Occultation
Depth =
(Rp / R.)?




EXOPLANET ATMOSPHERES

eNarrow-band/spectroscopic transit analysis can probe
absorption by specific atmospheric constituents

Occultation

tmosphere Depth =
(Rp(M) / R)?

Transit Spectroscopy:
in-transit vs. out-of-transit

eComposition
eTemperature structure
eVelocity flows
*Mass-loss rates



Transit Spectroscopy of Short-period Planets

eEUV heating driving mass-loss from short-period planets

eMost spectacular example has been on the short-period
Neptune-mass planet GJ 436b
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Hydrogen escaping from the upper atmosphere of GJ436b

(Kulow et al. 2014; Ehrenreich et al. 2015; Bourrier et al. 2016; Lavie et al. 2017)

Transit depth ~ 50% (!)




Extreme Exoplanet Atmospheres: challenges

eFor the ~half-dozen Hot Jupiters measured with
Hubble, we often find conflicting results, even on the
same planet!




Extreme Exoplanet Atmospheres: challenges

eOften discrepant results: time-variability in the star(?),
planetary mass-loss rate (?), or apples-vs-oranges
observations and data reduction algorithms




Extreme Exoplanet Atmospheres: challenges

eOften discrepant results: time-variability in the star(?),
planetary mass-loss rate (?), or apples-vs-oranges
observations and data reduction algorithms

eSample size of mass-loss measurements ~6, early-
ingress ~1, late-egress ~2




Extreme Exoplanet Atmospheres: challenges

eOften discrepant results: time-variability in the star(?),
planetary mass-loss rate (?), or apples-vs-oranges
observations and data reduction algorithms

eSample size of mass-loss measurements ~6, early-
ingress ~1, late-egress ~2

eStellar baseline for transit
measurements




Extreme Exoplanet Atmospheres: challenges

eOften discrepant results: time-variability in the star(?),
planetary mass-loss rate (?), or apples-vs-oranges
observations and data reduction algorithms

eSample size of mass-loss measurements ~6, early-
ingress ~1, late-egress ~2

eStellar baseline for transit
measurements

eSelf-consistent modeling framework



Extreme Exoplanet Atmospheres: challenges

eOften discrepant results: time-variability in the star(?),
planetary mass-loss rate (?), or apples-vs-oranges
observations and data reduction algorithms

eSample size of mass-loss measurements ~6, early-
ingress ~1, late-egress ~2

eStellar baseline for transit
measurements

eSelf-consistent modeling framework



Extreme Exoplanet Atmospheres: challenges

eOften discrepant results: time-variability in the star(?),
planetary mass-loss rate (?), or apples-vs-oranges
observations and data reduction algorithms

eSample size of mass-loss measurements ~6, early-
ingress ~1, late-egress ~2

eStellar baseline for transit
measurements

eSelf-consistent modeling framework



Extreme Exoplanet Atmospheres: challenges

eOften discrepant results: time-variability in the star(?),
planetary mass-loss rate (?), or apples-vs-oranges
observations and data reduction algorithms

eSample size of mass-loss measurements ~6, early-
ingress ~1, late-egress ~2

eStellar baseline for transit
measurements

eSelf-consistent modeling framework



Extreme Exoplanet Atmospheres: challenges

eOften discrepant results: time-variability in the star(?),
planetary mass-loss rate (?), or apples-vs-oranges
observations and data reduction algorithms

eSample size of mass-loss measurements ~6, early-
ingress ~1, late-egress ~2

eStellar baseline for transit
measurements

eSelf-consistent modeling framework



Colorado Ultraviolet Transit
Experiment (CUTE)
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CUTE: A NEW APP
MASS-LOSS

OSPHERIC

Survey of ~12-24 short-period
transiting planets around
nearby stars:
1) Atmospheric mass-loss
rates
2) Escaping atmosphere
composition



CUTE: ANEW APPROACH TO ATMOSPHERIC
MASS-LOSS MEASUREMENTS

2012 July 11 ] .
* Most detections of atmospheric mass loss

have been carried out in the FUV, Lya (e.g.

Pyt g Vidal-Madjar+ 2004, 2013, Linsky+ 2010,
17TA(EUV) 193°A(EUV)
— Ben-Jaffel+ 2007, 2013, Kulow+ 2014,
. Ehrenreich+ 2015, Bourrier et al. 2018)

.w- > >
A A 1700 A (FUV) m I . . .
= - e « Controversial interpretation due to low-S/N

and uncertain chromospheric intensity
distribution (e.g., Llama & Shkolnik 2015).

* The NUV has a more uniform,
mainly photospheric, intensity
distribution
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CUTE: ANEW APPROACH TO ATMOSPHERIC
MASS-LOSS MEASUREMENTS

* Most detections of atmospheric mass loss
Source: SDO have been carried out in the FUV (e.g. Vidal-
Madjar+ 2004, 2013, Linsky+ 2010, Ben-
Jaffel+ 2007, 2013, Kulow+ 2014, Ehrenreich+
2015, Bourrier et al. 2018)
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P \ * Controversial interpretation due to low-S/N
: and uncertain chromospheric intensity
distribution (e.g., Llama & Shkolnik 2015).

Feb. 9, 2000

 The NUV has both a more

uniform, mainly photospheric,
kavovaetal. 2006 [Ntensity distribution AND an
overall brighter background for
transit observations, ~50-2000x
brighter.




CUTE: ANEW APPROACH TO ATMOSPHERIC
MASS-LOSS MEASUREMENTS

* Brighter stellar flux enables
spectroscopy in a correspondingly
smaller platform

* Spectroscopy required to isolate
escaping gas species

WASP-121b; Sing et al. 2019
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Astronomy with Cubesats: Dedicated
Mission Architecture

30cm
» CUTE: First NASA grant funded UV/O/IR astronomy cubesat e —————
* Halosat X-ray cubesat (P. Kaaret, Univ. lowa)
20 cm
* More widely used in Earth observing, education,
and solar physics (e.g. CSSWE, MinXSS — Mason et al. 2017)
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Astronomy with Cubesats: Dedicated
Mission Architecture
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% CUTE Telescope = e

See CUTE design overview in Fleming et al. (2018)

Wave Rigid Flexure
Spectrograph g g
Enclosure Spring Bond (Left)

Washer

Rigid Flexure
Bonds (Right)

 Central S
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2 Secondary

Primary Mirror

Mount
Flexure

Geometric clear area for a Geometric clear area fora20x 8
9cm Cassegrain: A; ~ 47 cm? cm Cassegrain: A ~ 140 cm?

CUTE ~ 3 x more collecting area

30

France et al. (2020), Egan et al. (2020)



CUTE Science Instrument
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See CUTE design overview in Fleming et al. (2018), Egan et al. (2018)



CUTE Telescope (Flight)
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See CUTE design overview in Fleming et al. (2018); Egan et al. (2018)
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See CUTE design overview in Fleming et al. (2018); Egan et al. (2018)
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See CUTE design overview in Fleming et al. (2018); Egan et al. (2018)



CUTE Operations: Student Ops Team




Student & Pl Training Opportunities

5-0n training in
ardware

Suborbital Research Programs: end-
to-end mission experience
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See CUTE design overview in Fleming et al. (2018); Egan et al. (2018)






CUTE Spacecraft Testing

See CUTE design overview in Fleming et al. (2018); Egan et al. (2018)






CUTE End-to-End Testing
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HD 209458
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CUTE will achieve >30 detections of transits as low as 0.1% depth for the brightest
targets. Transit depths < 1% for all baseline targets with 5+ lightcurves per target.

Continuum transit sensitivity to 0.7% depth for median target over 1 transit

51
= Capable of detecting geometric transit and atmospheric transit



CUTE Predicted Science Data

« 2590-2610A 2842 - 2862 A 2550 -2775 A « 3000-3300A4
« 2775-2825A 2887 -2925 A 2776 - 3000 A

1] Uncertainty folded over 6 transits
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= Capable of detecting geometric transit and atmospheric transit

Egan et al. (2020)




CUTE Status
When will the Landsat 9 satellite be launched?

Landsat 9—a partnership between the USGS and NASA—has a launch readiness date of December 2020.

Landsat 9 will be launched from Space Launch Complex 3E at Vandenberg Air Force Base in California and will
be delivered into orbit by a United Launch Alliance Atlas V 401 launch vehicle.

Learn more: Landsat 9 Mission

B Landsat 1 July 1972 - January 1978
B Landsat2 January 1975 - July 1983
B Landsat3 March 1978 - September 1983
I Landsatd July 1982 - December 1993

i § Landsat5 March 1984 - January 2013

Landsatb6 October 1993
Landsat7 Apnil 1999
Landsat 8 February 2013

Landsat 9 2020




CUTE

When will the Lamdsat 9 satellite be launched?

Landsat 9—a partnership between the USGS and NASA—has a launch readiness date : sept 2 0 2 1
|

Landsat 9 will be launched from Space Launch Complex 3E at Vandenberg Air Force Base in California and wil
be delivered into orbit by a United Launch Alliance Atlas V 401 launch vehicle.

Learn more: Landsat 9 Mission

B Landsat 1 July 1972 - January 1978
B Landsat2 January 1975 - July 1983
B Landsat 3 March 1978 - September 1983
I Landsatd July 1982 - December 1993

It A Nl I Landsat5 March 1984 — January 2013

Landsat6 October 1993
Landsat7 Apnil 1999
Landsat 8 February 2013

Landsat9 2020 54




CUTE Status

Proposed ROSES D.3 APRA - March 2016

Selected February 2017, funded July 2017

Science Team face-to-face meetings:
Oct 2017, Nov 2018, Oct 2019, (Dec 2020)

Assembly, test, calibration: almost complete

Environmental Testing: April/May 2021

Launch Late Q3-2021
8 Month Baseline mission:

* 12 exoplanetary systems, 6-10 transits each
e 12 — 20 additional systems in 12 month

extended mission 55

@CuteCubeSat
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